On the Gaussian Approximation for Master Equations
نویسندگان
چکیده
منابع مشابه
On the Gaussian approximation for master equations
We analyze the Gaussian approximation as a method to obtain the first and second moments of a stochastic process described by a master equation. We justify the use of this approximation with ideas coming from van Kampen’s expansion approach (the fact that the probability distribution is Gaussian at first order). We analyze the scaling of the error with a large parameter of the system and compar...
متن کاملApproximation scheme for master equations: Variational approach to multivariate case.
We study an approximation scheme based on a second quantization method for a chemical master equation. Small systems, such as cells, could not be studied by the traditional rate equation approach because fluctuation effects are very large in such small systems. Although a Fokker-Planck equation obtained by the system size expansion includes the fluctuation effects, it needs large computational ...
متن کاملNumerical approximation based on the Bernouli polynomials for solving Volterra integro-differential equations of high order
In this article, an applied matrix method, which is based on Bernouli Polynomials, has been presented to find approximate solutions of high order Volterra integro-differential equations. Through utilizing this approach, the proposed equations reduce to a system of algebric equations with unknown Bernouli coefficients. A number of numerical illustrations have been solved to assert...
متن کاملStable Gaussian radial basis function method for solving Helmholtz equations
Radial basis functions (RBFs) are a powerful tool for approximating the solution of high-dimensional problems. They are often referred to as a meshfree method and can be spectrally accurate. In this paper, we analyze a new stable method for evaluating Gaussian radial basis function interpolants based on the eigenfunction expansion. We develop our approach in two-dimensional spaces for so...
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Statistical Physics
سال: 2010
ISSN: 0022-4715,1572-9613
DOI: 10.1007/s10955-010-0024-7